Sunday, September 2, 2007
2ND QUARTER OF PHYSICS-IV
Statics
Static is the branch of physics concerned with the analysis of loads (force, torque/moment) on physical systems in static equilibrium, that is, in a state where the relative positions of subsystems do not vary over time, or where components and structures are at rest under the action of external forces of equilibrium. When in static equilibrium, the system is either at rest, or moving at constant velocity through its center of mass.
By Newton's second law, this situation implies that the net force and net torque (also known as moment) on every body in the system is zero, meaning that for every force bearing upon a member, there must be an equal and opposite force. From this constraint, such quantities as stress or pressure can be derived. The net forces equalling zero is known as the first condition for equilibrium, and the net torque equalling zero is known as the second condition for equilibrium. See statically determinate.
Statics is thoroughly used in the analysis of structures, for instance in architectural and structural engineering. Strength of materials is a related field of mechanics that relies heavily on the application of static equilibrium.
Hydrostatics, also known as fluid statics, is the study of fluids at rest. This analyzes systems in static equilibrium which involve forces due to mechanical fluids. The characteristic of any fluid at rest is that the force exerted on any particle of the fluid is the same in every direction. If the force is unequal the fluid will move in the direction of the resulting force. This concept was first formulated in a slightly extended form by the French mathematician and philosopher Blaise Pascal in 1647 and would be later known as Pascal's Law. This law has many important applications in hydraulics. Galileo also was a major figure in the development of hydrostatics.
In economics, "static" analysis has substantially the same meaning as in physics. Since the time of Paul Samuelson's Foundations of Economic Analysis (1947), the focus has been on "comparative statics", i.e., the comparison of one static equilibrium to another, with little or no discussion of the process of going between them – except to note the exogenous changes that caused the movement.
In exploration geophysics, "statics" is used as a short form for "static correction", referring to bulk time shifts of a reflection seismogram to correct for the variations in elevation and velocity of the seismic pulse through the weathered and unconsolidated upper layers.
Equilibrium
Equilibrium is the condition of a system in which competing influences are balanced and it may refer to:
Biology
Equilibrioception, the sense of balance present in humans and animals
Homeostasis, the ability of an open system, especially living organisms, to regulate its internal environment
Genetic equilibrium, theoretical state in which a population is not evolving
Punctuated equilibrium, theory in evolutionary biology
Sedimentation equilibrium, analytical ultracentrifugation method for measuring protein molecular masses in solution
Ecological homeostasis, a property of some ecosystems
Chemistry
Chemical equilibrium, the state in which the concentrations of the reactants and products have no net change over time
Diffusion equilibrium, when the concentrations of the diffusing substance in the two compartments are equal
Donnan equilibrium, the distribution of ion species between two ionic solutions separated by a semipermeable membrane or boundary
Dynamic equilibrium, the state in which two reversible processes occur at the same rate
Equilibrium constant, a quantity characterizing a chemical equilibrium in a chemical reaction
Equilibrium unfolding, the process of unfolding a protein or RNA molecule by gradually changing its environment
Partition equilibrium, a type of chromatography that is typically used in GC
Quasistatic equilibrium, the quasi-balanced state of a thermodynamic system near to equilibrium in some sense or degree
Schlenk equilibrium, a chemical equilibrium named after its discoverer Wilhelm Schlenk taking place in solutions of Grignard reagents
Solubility equilibrium, any chemical equilibrium between solid and dissolved states of a compound at saturation
Thermodynamic equilibrium, the state of a thermodynamic system which is in thermal, mechanical, and chemical equilibrium
Economics
Competitive equilibrium, economic equilibrium when all buyers and sellers are small relative to the market
Economic equilibrium, a condition in economics
Equilibrium price, the price at which supply equals demand
General equilibrium, a branch of theoretical microeconomics
Intertemporal equilibrium, an equilibrium concept over time
Lindahl equilibrium, a method proposed by Erik Lindahl for financing public goods
Partial equilibrium, one part of the general economic equilibrium
Radner equilibrium, an economic concept defined by economist Roy Radner in the context of general equilibrium
Static equilibrium (economics), the intersection of supply and demand in any market
Sunspot equilibrium, an economic equilibrium in which nonfundamental factors affect prices or quantities
Underemployment equilibrium, a situation in Keynesian economics with a persistent shortfall relative to full employment and potential output
Game theory
Correlated equilibrium, a solution concept in game theory that is more general than the well known Nash equilibrium
Nash equilibrium, a solution concept in game theory involving two or more players
Quasi-perfect equilibrium, a refinement of Nash Equilibrium for extensive form games due to Eric van Damme
Sequential equilibrium, a refinement of Nash Equilibrium for extensive form games due to David M. Kreps and Robert Wilson
Symmetric equilibrium, in game theory, an equilibrium where all players use the same strategy
Trembling hand perfect equilibrium assumes that the players, through a "slip of the hand" or tremble, may choose unintended strategies
Music
Equilibrium (band), a German Viking metal band
"IX Equilibrium", the third LP by the Black metal band Emperor
Equilibrium (record label), a Portuguese record label
Physics
Equilibrium mode distribution, involves light traveling in an optical waveguide or fiber
Hydrostatic equilibrium, the state of a system in which compression due to gravity is balanced by a pressure gradient force
Hyperbolic equilibrium point, a mathematical concept in physics
Mechanical equilibrium, the state in which the sum of the forces, and torque, on each particle of the system is zero
Secular equilibrium, a state of radioactive elements in which the production rate of a daughter nucleus is balanced by its own decay rate
Other
Equilibrium (2002 film), a science-fiction film
"Equilibrium" (seaQuest 2032 episode), episode of seaQuest 2032
"Equilibrium" (DS9 episode), an episode of Star Trek: Deep Space Nine
Equilibrium moisture content, the moisture content at which the wood is neither gaining nor losing moisture
Equilibrium point, node in mathematics
Patterson equilibrium, a theory used in highway traffic modelling, air-traffic modelling, business modelling, and electrical grid operation
Reflective equilibrium, the state of balance or coherence among a set of beliefs arrived at by a process of deliberative mutual adjustment
Social equilibrium, a system in which there is a dynamic working balance among its interdependent parts
Equilibrium (puzzle), a 3D interlocking type puzzle made of 6 half circle pieces
STATIC EQUILIBRIUM
Static equilibrium refers to objects that are not moving. There are many objects that we would like to have in static equilibrium; your kitchen cabinents or bedroom wall, for example. If an object is in static equilibrium, there are two very specific things the object is not doing that are important to understand. It is neither translating nor is it rotating. The first condition, no translation, requires that the net force (meaning the sum of all forces) acting on the object must be zero. The second condition, no rotation, requires that the net torque or moment also be zero. We will carefully define and examine both of these ideas.
Weight and mass
In modern usage in the field of mechanics, weight and mass are fundamentally different quantities: mass is an intrinsic property of matter, whereas weight is a force that results from the action of gravity on matter.
However, the recognition of this difference is, historically, a relatively recent development – and in many everyday situations the word "weight" continues to be used when strictly speaking "mass" is meant. For example, we say that an object "weighs one kilogram", even though the kilogram is actually a unit of mass. This common parlance usage is due to the early proliferation of force-based measurement systems widely being displaced with the more scientific and mass-based SI system. This transition has led to the common and even legal intertwining of "weight" and "mass" as equivalents.
The distinction between mass and weight is unimportant for many practical purposes because, to a reasonable approximation, the strength of gravity is the same everywhere on the surface of the Earth. In such a constant gravitational field, the gravitational force exerted on an object (its weight) is directly proportional to its mass. So, if object A weighs, say, 10 times as much as object B, then object A's mass is 10 times that of object B. This means that an object's mass can be measured indirectly by its weight (for conversion formulas see below). For example, when we buy a bag of sugar we can measure its weight (how hard it presses down on the scales) and be sure that this will give a good indication of the quantity that we are actually interested in, which is the mass of sugar in the bag. Nevertheless, slight variations in the Earth's gravitational field do exist (see Earth's gravity), and these must be taken into account in high precision weight measurements.
The use of "weight" for "mass" also persists in some scientific terminology – for example, in the chemical terms "atomic weight", "molecular weight", and "formula weight", rather than the preferred "atomic mass" etc.
The difference between mass and force becomes obvious when
objects are compared in different gravitational fields, such as away from the Earth's surface. For example, on the surface of the Moon, gravity is only about one-sixth as strong as on the surface of the Earth. A one-kilogram mass is still a one-kilogram mass (as mass is an intrinsic property of the object) but the downwards force due to gravity is only one-sixth of what the object would experience on Earth. Weight is relative to the local gravitional field, mass is not.
masses are considered in the context of a lever, such as a cantilever structure.
locating the center of gravity of an object.
Units of weight (force)
Systems of units of weight (force) and mass have a tangled history, partly because the distinction was not properly understood when many of the units first came into use.
SI units
In most modern scientific work, physical quantities are measured in SI units. The SI unit of mass is the kilogram. The SI unit of force (and hence weight) is the newton (N) – which can also be expressed in SI base units as kg·m/s² (kilograms times meters per second squared).
The kilogram-force is a non-SI unit of force, defined as the force exerted by a one-kilogram mass in standard Earth gravity (equal to about 9.8 newtons).
The gravitational force exerted on an object is proportional to the mass of the object, so it is reasonable to think of the strength of gravity as measured in terms of force per unit mass, that is, newtons per kilogram (N/kg). However, the unit N/kg resolves to m/s²; (metres per second per second), which is the SI unit of acceleration, and in practice gravitational strength is usually quoted as an acceleration.
The pound and related units
In United States customary units, the pound can be either a unit of force or a unit of mass. Related units used in some distinct, separate subsystems of units include the poundal and the slug. The poundal is defined as the force necessary to accelerate a one-pound object at 1 ft/s², and is equivalent to about 1/32 of a pound (force). The slug is defined as the amount of mass that accelerates at 1 ft/s² when a pound of force is exerted on it, and is equivalent to about 32 pounds (mass).
Conversion between weight (force) and mass
To convert between weight (force) and mass we use Newton's second law, F = ma (force = mass × acceleration). Here, F is the force due to gravity (i.e. the weight force), m is the mass of the object in question, and a is the acceleration due to gravity, on Earth approximately 9.8 m/s² or 32 ft/s²). In this context the same equation is often written as W = mg, with W standing for weight, and g for the acceleration due to gravity.
When applying the equation it is essential to use consistent units otherwise a meaningless answer will result. In SI units we see that a one-kilogram mass experiences a gravitational force of 1 kg × 9.8 m/s² = 9.8 newtons; that is, its weight is 9.8 newtons. In general, to convert mass in kilograms to weight (force) in newtons (at the earth's surface), multiply by 9.8. Conversely, to convert newtons to kilograms divide by 9.8.
Sensation of weight
See also: apparent weight
The weight force that we actually sense is not the downward force of gravity, but the normal force (an upward contact force) exerted by the surface we stand on, which opposes gravity and prevents us falling to the center of the Earth. This normal force, called the apparent weight, is the one that is measured by a spring scale.
For a body supported in a stationary position, the normal force balances the earth's gravitational force, and so apparent weight has the same magnitude as actual weight. (Technically, things are slightly more complicated. For example, an object immersed in water weighs less, according to a spring scale, than the same object in air; this is due to buoyancy, which opposes the weight force and therefore generates a smaller normal. These and other factors are explained further under apparent weight.)
If there is no contact with any surface to provide such an opposing force then there is no sensation of weight (no apparent weight). This happens in free-fall, as experienced by sky-divers (until they approach terminal velocity) and astronauts in orbit, who feel "weightless" even though their bodies are still subject to the force of gravity: they're just no longer resisting it. The experience of having no apparent weight is also known as microgravity.
A degree of reduction of apparent weight occurs, for example, in elevators. In an elevator, a spring scale will register a decrease in a person's (apparent) weight as the elevator starts to accelerate downwards. This is because the opposing force of the elevator's floor decreases as it accelerates away underneath one's feet.
Measuring weight
Main article: Weighing scale
Weight is commonly measured using one of two methods. A spring scale or hydraulic or pneumatic scale measures weight force (strictly apparent weight force) directly. If the intention is to measure mass rather than weight, then this force must be converted to mass. As explained above, this calculation depends on the strength of gravity. Household and other low precision scales that are calibrated in units of mass (such as kilograms) assume roughly that standard gravity will apply. However, although nearly constant, the apparent or actual strength of gravity does in fact vary very slightly in different places on the earth (see standard gravity, physical geodesy, gravity anomaly and gravity). This means that same object (the same mass) will exert a slightly different weight force in different places. High precision spring scales intended to measure mass must therefore be calibrated specifically according their location on earth.
Mass may also be measured with a balance, which compares the item in question to others of known mass. This comparison remains valid whatever the local strength of gravity. If weight force, rather than mass, is required, then this can be calculated by multiplying mass by the acceleration due to gravity – either standard gravity (for everyday work) or the precise local gravity (for precision work).
Gross weight is a term that generally is found in commerce or trade applications, and refers to the gross or total weight of a product and its packaging. Conversely, net weight refers to the intrinsic weight of the product itself, discounting the weight of packaging or other materials.
Relative weights on the Earth, other planets and the Moon
The following is a list of the weights of a mass on the surface of some of the bodies in the solar system, relative to its weight on Earth:
Mercury
0.378
Venus
0.907
Earth
1
Moon
0.165
Mars
0.377
Jupiter
2.364
Saturn
0.910
Uranus
0.889
Neptune
1.125
Center of gravity
The center of gravity is a geometric property of any object. The center of gravity is the average location of the weight of an object. We can completely describe the motion of any object through space in terms of the translation of the center of gravity of the object from one place to another, and the rotation of the object about its center of gravity if it is free to rotate. If the object is confined to rotate about some other point, like a hinge, we can still describe its motion. In flight, both airplanes and rockets rotate about their centers of gravity. A kite, on the other hand, rotates about the bridle point. But the trim of a kite still depends on the location of the center of gravity relative to the bridle point, because for every object the weight always acts through the center of gravity.
Determining the center of gravity is very important for any flying object. How do engineers determine the location of the center of gravity for an aircraft which they are designing?
In general, determining the center of gravity (cg) is a complicated procedure because the mass (and weight) may not be uniformly distributed throughout the object. The general case requires the use of calculus which we will discuss at the bottom of this page. If the mass is uniformly distributed, the problem is greatly simplified. If the object has a line (or plane) of symmetry, the cg lies on the line of symmetry. For a solid block of uniform material, the center of gravity is simply at the average location of the physical dimensions. (For a rectangular block, 50 X 20 X 10, the center of gravity is at the point (25,10, 5) ). For a triangle of height h, the cg is at h/3, and for a semi-circle of radius r, the cg is at (4*r/(3*pi)) where pi is ratio of the circumference of the circle to the diameter. There are tables of the location of the center of gravity for many simple shapes in math and science books. The tables were generated by using the equation from calculus shown on the slide.
For a general shaped object, there is a simple mechanical way to determine the center of gravity:
1. If we just balance the object using a string or an edge, the point at which the object is balanced is the center of gravity. (Just like balancing a pencil on your finger!)
2. Another, more complicated way, is a two step method shown on the slide. In Step 1, you hang the object from any point and you drop a weighted string from the same point. Draw a line on the object along the string. For Step 2, repeat the procedure from another point on the object You now have two lines drawn on the object which intersect. The center of gravity is the point where the lines intersect. This procedure works well for irregularly shaped objects that are hard to balance.
If the mass of the object is not uniformly distributed, we must use calculus to determine center of gravity. We will use the symbol S dw to denote the integration of a continuous function with respect to weight. Then the center of gravity can be determined from:
cg * W = S x dw
where x is the distance from a reference line, dw is an increment of weight, and W is the total weight of the object. To evaluate the right side, we have to determine how the weight varies geometrically. From the weight equation, we know that:
w = m * g
where m is the mass of the object, and g is the gravitational constant. In turn, the mass m of any object is equal to the density, rho, of the object times the volume, V:
m = rho * V
We can combine the last two equations:
w = g * rho * V
then
dw = g * rho * dV
dw = g * rho(x,y,z) * dx dy dz
If we have a functional form for the mass distribution, we can solve the equation for the center of gravity:
cg * W = g * SSS x * rho(x,y,z) dx dy dz
where SSS indicates a triple integral over dx. dy. and dz. If we don't know the functional form of the mass distribution, we can numerically integrate the equation using a spreadsheet. Divide the distance into a number of small volume segments and determining the average value of the weight/volume (density times gravity) over that small segment. Taking the sum of the average value of the weight/volume times the distance times the volume segment divided by the weight will produce the center of gravity.
Wednesday, July 11, 2007
Tuesday, July 3, 2007
THE S.I. DERIVED UNITS
SI DERIVED UNITS
Frequency
hertz: Hz = 1/s
Force
newton: N = m kg/s2
Pressure, stress
pascal: Pa = N/m2 = kg/m s2
Energy, work, quantity of heat
joule: J = N m = m2 kg/s2
Power, radiant flux
watt: W = J/s = m2 kg/s3
Quantity of electricity, electric charge
coulomb: C = s A
Electric potential
volt: V = W/A = m2 kg/s3 A
Capacitance
farad: F = C/V = s4 A2/m2 kg
Electric resistance
ohm: Omega = V/A = m2 kg/s3 A2
Conductance
siemens: S = A/V = s3 A2/m2 kg
Magnetic flux
weber: Wb = V s = m2 kg/s2 A
Magnetic flux density, magnetic induction
tesla: T = Wb/m2 = kg/s2 A
Inductance
henry: H = Wb/A = m2 kg/s2 A2
Luminous flux
lumen: lm = cd sr
Illuminance
lux: lx = lm/m2 = cd sr/m2
Activity (ionizing radiations)
becquerel: Bq = 1/s
Absorbed dose
gray: Gy = J/kg = m2/s2
Dynamic viscosity
pascal second: Pa s = kg/m s
Moment of force
metre newton: N m = m2 kg/s2
Surface tension
newton per metre: N/m = kg/s2
Heat flux density, irradiance
watt per square metre: W/m2 = kg/s3
Heat capacity, entropy
joule per kelvin: J/K = m2 kg/s2 K
Specific heat capacity, specific entropy
joule per kilogram kelvin: J/kg K = m2/s2 K
Specific energy
joule per kilogram: J/kg = m2/s2
Thermal conductivity
watt per metre kelvin: W/m K = m kg/s3 K
Energy density
joule per cubic metre: J/m3 = kg/m s2
Electric field strength
volt per metre: V/m = m kg/s3 A
Electric charge density
coulomb per cubic metre: C/m3 = s A/m3
Electric displacement, electric flux density
coulomb per square metre: C/m2 = s A/m2
Permittivity
farad per metre: F/m = s4 A2/m3 kg
Permeability
henry per metre: H/m = m kg/s2 A2
Molar energy
joule per mole: J/mol = m2 kg/s2 mol
Molar entropy, molar heat capacity
joule per mole kelvin: J/mol K = m2 kg/s2 K mol
Exposure (ionizing radiations)
coulomb per kilogram: C/kg = s A/kg
Absorbed dose rate
gray per second: Gy/s = m2/s3
Frequency
hertz: Hz = 1/s
Force
newton: N = m kg/s2
Pressure, stress
pascal: Pa = N/m2 = kg/m s2
Energy, work, quantity of heat
joule: J = N m = m2 kg/s2
Power, radiant flux
watt: W = J/s = m2 kg/s3
Quantity of electricity, electric charge
coulomb: C = s A
Electric potential
volt: V = W/A = m2 kg/s3 A
Capacitance
farad: F = C/V = s4 A2/m2 kg
Electric resistance
ohm: Omega = V/A = m2 kg/s3 A2
Conductance
siemens: S = A/V = s3 A2/m2 kg
Magnetic flux
weber: Wb = V s = m2 kg/s2 A
Magnetic flux density, magnetic induction
tesla: T = Wb/m2 = kg/s2 A
Inductance
henry: H = Wb/A = m2 kg/s2 A2
Luminous flux
lumen: lm = cd sr
Illuminance
lux: lx = lm/m2 = cd sr/m2
Activity (ionizing radiations)
becquerel: Bq = 1/s
Absorbed dose
gray: Gy = J/kg = m2/s2
Dynamic viscosity
pascal second: Pa s = kg/m s
Moment of force
metre newton: N m = m2 kg/s2
Surface tension
newton per metre: N/m = kg/s2
Heat flux density, irradiance
watt per square metre: W/m2 = kg/s3
Heat capacity, entropy
joule per kelvin: J/K = m2 kg/s2 K
Specific heat capacity, specific entropy
joule per kilogram kelvin: J/kg K = m2/s2 K
Specific energy
joule per kilogram: J/kg = m2/s2
Thermal conductivity
watt per metre kelvin: W/m K = m kg/s3 K
Energy density
joule per cubic metre: J/m3 = kg/m s2
Electric field strength
volt per metre: V/m = m kg/s3 A
Electric charge density
coulomb per cubic metre: C/m3 = s A/m3
Electric displacement, electric flux density
coulomb per square metre: C/m2 = s A/m2
Permittivity
farad per metre: F/m = s4 A2/m3 kg
Permeability
henry per metre: H/m = m kg/s2 A2
Molar energy
joule per mole: J/mol = m2 kg/s2 mol
Molar entropy, molar heat capacity
joule per mole kelvin: J/mol K = m2 kg/s2 K mol
Exposure (ionizing radiations)
coulomb per kilogram: C/kg = s A/kg
Absorbed dose rate
gray per second: Gy/s = m2/s3
Thursday, June 21, 2007
Moon Tides ..... How the Moon affects the Ocean tides?
THE MOON TIDES...
The word "tides" is a generic term used to define the alternating rise and fall in sea level with respect to the land, produced by the gravitational attraction of the moon and the sun. To a much smaller extent, tides also occur in large lakes, the atmosphere, and within the solid crust of the earth, acted upon by these same gravitational forces of the moon and sun.
What are Lunar TidesTides are created because the Earth and the moon are attracted to each other, just like magnets are attracted to each other. The moon tries to pull at anything on the Earth to bring it closer. But, the Earth is able to hold onto everything except the water. Since the water is always moving, the Earth cannot hold onto it, and the moon is able to pull at it. Each day, there are two high tides and two low tides. The ocean is constantly moving from high tide to low tide, and then back to high tide. There is about 12 hours and 25 minutes between the two high tides.
Tides are the periodic rise and falling of large bodies of water. Winds and currents move the surface water causing waves. The gravitational attraction of the moon causes the oceans to bulge out in the direction of the moon. Another bulge occurs on the opposite side, since the Earth is also being pulled toward the moon (and away from the water on the far side). Ocean levels fluctuate daily as the sun, moon and earth interact. As the moon travels around the earth and as they, together, travel around the sun, the combined gravitational forces cause the world's oceans to rise and fall. Since the earth is rotating while this is happening, two tides occur each day.
What are the different types of TidesWhen the sun and moon are aligned, there are exceptionally strong gravitational forces, causing very high and very low tides which are called spring tides, though they have nothing to do with the season. When the sun and moon are not aligned, the gravitational forces cancel each other out, and the tides are not as dramatically high and low. These are called neap tides.
SPRING TIDES
Spring TidesWhen the moon is full or new, the gravitational pull of the moon and sun are combined. At these times, the high tides are very high and the low tides are very low. This is known as a spring high tide. Spring tides are especially strong tides (they do not have anything to do with the season Spring). They occur when the Earth, the Sun, and the Moon are in a line. The gravitational forces of the Moon and the Sun both contribute to the tides. Spring tides occur during the full moon and the new moon.
NEAP TIDES
Neap TidesDuring the moon's quarter phases the sun and moon work at right angles, causing the bulges to cancel each other. The result is a smaller difference between high and low tides and is known as a neap tide. Neap tides are especially weak tides. They occur when the gravitational forces of the Moon and the Sun are perpendicular to one another (with respect to the Earth). Neap tides occur during quarter moons.
PROXIGEAN TIDES
The Proxigean Spring Tide is a rare, unusually high tide. This very high tide occurs when the moon is both unusually close to the Earth (at its closest perigee, called the proxigee) and in the New Moon phase (when the Moon is between the Sun and the Earth). The proxigean spring tide occurs at most once every 1.5 years.
ENGLISH 101....Fourth Year Level
CONJUNCTION
In grammar, a conjunction is a part of speech that connects two words, phrases, or clauses together. This definition may overlap with that of other parts of speech, so what constitutes a "conjunction" should be defined for each language. In general, a conjunction is an invariable grammatical particle, and it may or may not stand between the items it conjoins.
The definition can also be extended to idiomatic phrases that behave as a unit with the same function as a single-word conjunction (as well as, provided that, etc.).
TYPES OF CONJUNCTIONS
COORDINATING CONJUNCTIONS
Coordinating conjunctions, also called coordinators, are conjunctions that join two items of equal syntactic importance. As an example, the traditional view holds that the English coordinating conjunctions are for, and, nor, but, or, yet, and so (which form the mnemonic FANBOYS). Note that there are good reasons to argue that only and, but, and or are prototypical coordinators, while nor is very close. So and yet share more properties with conjunctive adverbs (e.g., however), and "for...lack(s) most of the properties distinguishing prototypical coordinators from prepositions with clausal complements" . Furthermore, there are other ways to coordinate independent clauses in English.
CORRELATIVE CONJUNCTIONS
Correlative conjunctions are pairs of conjunctions which work together to coordinate two items. English examples include both … and, either … or, neither … nor, and not (only) … but (… also).
SUBORDINATING CONJUNCTIONS
Subordinating conjunctions, also called subordinators, are conjunctions that introduce a dependent clause. English examples include after, although, if, unless, and because. Another way for remembering is the mnemonic "BISAWAWE": "because", "if", "so that", "after", "when", "although", "while", and "even though". Complementizers can be considered to be special subordinating conjunctions that introduce complement clauses (e.g., "I wonder whether he'll be late. I hope that he'll be on time").
In many verb-final languages, subordinate clauses must precede the main clause on which they depend. The equivalents to the subordinating conjunctions of non-verb-final languages like English are either
clause-final conjuctions (e.g. in Japanese) or;
suffixes attached to the verb and not separate words
THE BLACK HOLE….AND IT’S PURPOSE
A black hole is an object with a gravitational field so powerful that a region of space becomes cut off from the rest of the universe – no matter or radiation, including visible light, that has entered the region can ever escape. The lack of escaping electromagnetic radiation renders the inside of black holes (beyond the event horizon) invisible, hence the name.
A black hole is an object with a gravitational field so powerful that a region of space becomes cut off from the rest of the universe – no matter or radiation, including visible light, that has entered the region can ever escape. The lack of escaping electromagnetic radiation renders the inside of black holes (beyond the event horizon) invisible, hence the name.
However, black holes can be detectable if they interact with matter, e.g. by sucking in gas from an orbiting star. The gas spirals inward, heating up to very high temperatures and emitting large amounts of light, X-rays and Gamma rays in the process while still outside of the event horizon. Black holes are also thought to emit a weak form of thermal energy called Hawking radiation.
While the idea of an object with gravity strong enough to prevent light from escaping was proposed in the 18th century, black holes as presently understood are described by Einstein's theory of general relativity, developed in 1916.
This theory predicts that when a large enough amount of mass is present within a sufficiently small region of space, all paths through space are warped inwards towards the center of the volume. When an object is compressed enough for this to occur, collapse is unavoidable (it would take infinite strength to resist collapsing into a black hole). When an object passes within the event horizon at the boundary of the black hole, it is lost forever (it would take an infinite amount of effort for an object to climb out from inside the hole).
Although the object would be reduced to a singularity, the information it carries is not lost (see the black hole information paradox).
While general relativity describes a black hole as a region of empty space with a pointlike singularity at the center and an event horizon at the outer edge, the description changes when the effects of quantum mechanics are taken into account. The final, correct description of black holes, requiring a theory of quantum gravity, is unknown.
Tuesday, June 19, 2007
Flame-resistant wick holder for candle ...
ABSTRACT
THE RESIST TIME OF THE WICK OF THE CANDLE
A wick assembly for a candle having a wick, the candle made from a fuel capable of melting to form a liquid pool and traveling by capillary action to a flame burning on the wick, the wick assembly comprising.
A wick clip holding one end of the wick inside a tube having an upper end, the wick extending from the upper end;
a sleeve having a top end, a bottom end, a side wall connecting the top end to the bottom end, and a bore through the sleeve for fitting around the tube and the wick, the sleeve top end positioned adjacent or extending past the tube upper end, the sleeve being made from a non-combustible material selected from the group consisting of polyethersulfone and polyvinylchloride.
Subscribe to:
Posts (Atom)